LET-418/Mi2 and SPR-5/LSD1 Cooperatively Prevent Somatic Reprogramming of C. elegans Germline Stem Cells
نویسندگان
چکیده
Throughout their journey to forming new individuals, germline stem cells must remain totipotent, particularly by maintaining a specific chromatin structure. However, the place epigenetic factors occupy in this process remains elusive. So far, "sensitization" of chromatin by modulation of histone arrangement and/or content was believed to facilitate transcription-factor-induced germ cell reprogramming. Here, we demonstrate that the combined reduction of two epigenetic factors suffices to reprogram C. elegans germ cells. The histone H3K4 demethylase SPR-5/LSD1 and the chromatin remodeler LET-418/Mi2 function together in an early process to maintain germ cell status and act as a barrier to block precocious differentiation. This epigenetic barrier is capable of limiting COMPASS-mediated H3K4 methylation, because elevated H3K4me3 levels correlate with germ cell reprogramming in spr-5; let-418 mutants. Interestingly, germ cells deficient for spr-5 and let-418 mainly reprogram as neurons, suggesting that neuronal fate might be the first to be derepressed in early embryogenesis.
منابع مشابه
A Network of Chromatin Factors Is Regulating the Transition to Postembryonic Development in Caenorhabditis elegans
Mi2 proteins are evolutionarily conserved, ATP-dependent chromatin remodelers of the CHD family that play key roles in stem cell differentiation and reprogramming. In Caenorhabditis elegans, the let-418 gene encodes one of the two Mi2 homologs, which is part of at least two chromatin complexes, namely the Nucleosome Remodeling and histone Deacetylase (NuRD) complex and the MEC complex, and func...
متن کاملThe Caenorhabditis elegans LET-418/Mi2 plays a conserved role in lifespan regulation.
The evolutionarily conserved nucleosome-remodeling protein Mi2 is involved in transcriptional repression during development in various model systems, plays a role in embryonic patterning and germ line development, and participates in DNA repair and cell cycle progression. It is the catalytic subunit of the nucleosome remodeling and histone deacetylase (NuRD) complex, a key determinant of differ...
متن کاملA C. elegans LSD1 Demethylase Contributes to Germline Immortality by Reprogramming Epigenetic Memory
Epigenetic information undergoes extensive reprogramming in the germline between generations. This reprogramming may be essential to establish a developmental ground state in the zygote. We show that mutants in spr-5, the Caenorhabditis elegans ortholog of the H3K4me2 demethylase LSD1/KDM1, exhibit progressive sterility over many generations. This sterility correlates with the misregulation of ...
متن کاملMEP-1 and a Homolog of the NURD Complex Component Mi-2 Act Together to Maintain Germline-Soma Distinctions in C. elegans
A rapid cascade of regulatory events defines the developmental fates of embryonic cells. However, once established, these developmental fates and the underlying transcriptional programs can be remarkably stable. Here, we describe two proteins, MEP-1 and LET-418/Mi-2, required for maintenance of somatic differentiation in C. elegans. In animals lacking MEP-1 and LET-418, germline-specific genes ...
متن کاملGenetic and Epigenetic landscape of Germline Stem Cells
Elucidating the critical epigenetics events involved in differentiation and reprogramming of cells to primordial germ cells (PGCs) is among the interesting issues in stem cell research. Here, I will talk about critical transcription factors and global hypomethylation in development of germ cells. Evidence strongly suggests that the earliest PGCs emerging in the E7.25 mouse embryo epiblast have...
متن کامل